We offer a range of plating methods to suit all applications.

A brief description.

Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years, but it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish. Thin-film deposition has plated objects as small as an atom, therefore plating finds uses in nanotechnology.

Northern Industrial Plating - Zinc Plating

Electroplating

In electroplating, an  metal is supplied with electrons to form a non-ionic coating on a substrate. A common system involves a chemical solution with the ionic form of the metal, an anode (positively charged) which may consist of the metal being plated (a soluble anode) or an insoluble anode (usually carbon, platinum, titanium, lead, or steel), and finally, a cathode (negatively charged) where electrons are supplied to produce a film of non-ionic metal.

Chrome plating is a finishing treatment utilizing the electrolytic deposition of chromium. The most common form of chrome plating is the thin, decorative bright chrome, which is typically a 10-µm layer over an underlying nickel plate. When plating on iron or steel, an underlying plating of copper allows the nickel to adhere. The pores (tiny holes) in the nickel and chromium layers also promote corrosion resistance. Bright chrome imparts a mirror-like finish to items such as metal furniture frames and automotive trim. Thicker deposits, up to 1000 µm, are called hard chrome and are used in industrial equipment to reduce friction and wear.

The traditional solution used for industrial hard chrome plating is made up of about 250 g/l of CrO3 and about 2.5 g/l of SO4-. In solution, the chrome exists as chromic acid, known as hexavalent chromium. A high current is used, in part to stabilize a thin layer of chromium(+2) at the surface of the plated work. Acid chrome has poor throwing power, fine details or holes are further away and receive less current resulting in poor plating.

Zinc plating

Zinc coatings prevent oxidation of the protected metal by forming a barrier and by acting as a sacrificial anode if this barrier is damaged. Zinc oxide is a fine white dust that (in contrast to iron oxide) does not cause a breakdown of the substrate's surface integrity as it is formed. Indeed the zinc oxide, if undisturbed, can act as a barrier to further oxidation, in a way similar to the protection afforded to aluminum and stainless steels by their oxide layers. The majority of hardware parts are zinc plated, rather than cadmium plated.